Producción de lípidos totales de la Microalga Chlorella sp. y Chlorella Vulgaris en condiciones mixotróficas de cultivo

  • Ildefonso Baldiris Navarro Sena
  • Juan Manuel Pérez Suárez Sena
  • Alianys Cafiel Correa Sena
  • Juan Fajardo Cuadro Universidad Tecnológica de Bolívar
  • Rafael Correa Turizo Fundación Universitaria Tecnologico Comfenalco
  • Ildefonso Castro Angulo Fundación Universitaria Tecnologico Comfenalco
Palabras clave: Microalgas, Chlorella sp, Chlorella vulgaris, lípidos, cinética

Resumen

La microalga de agua dulce Chlorella sp. y Chlorella Vulgaris se cultivaron en un fotobiorreactor a escala de laboratorio y se evaluó su cinética de crecimiento y producción de lípidos totales. Estas especies se cultivaron en medio Conway modificado, con fotoperíodo 8:16 y ventilación mecánica. El tiempo de evaluación fue de veinte días, la densidad celular se determinó diariamente mediante cámara de Neubauer y mediante densidad óptica mediante espectrofotometría a 685 nm. Se determinó la tasa de crecimiento y el porcentaje de lípidos totales producidos, las biomasas obtenidas se analizaron por espectroscopia infrarroja transformada de Fourier (FTIR). La comparación de las cinéticas de crecimiento mostró una diferencia significativa entre el crecimiento de las especies, alcanzando valores máximos de crecimiento de 7.022.000 cel·mL-1 para Chlorella sp. y 8.750.000 células · mL-1 para Chlorella vulgaris. La especie Chlorella sp mostró una tasa de crecimiento de 0,298 días-1, ligeramente superior a la de Chlorella vulgaris, que fue de 0,279 días-1. Los resultados también muestran que la especie con mayor producción total de lípidos fue Chlorella sp. (27,3%), frente a Chlorella vulgaris (21,5%).

Descargas

La descarga de datos todavía no está disponible.

Referencias bibliográficas

Ananthi, V., Raja, R., Carvalho, I. S., Brindhadevi, K., Pugazhendhi, A., & Arun, A. (2021). A realistic scenario on microalgae-based biodiesel production: Third generation biofuel. Fuel, 284, 118965.

Baldiris-Navarro, I., Hernan, J., Aponte, S., Virviescas, M. T., (2017). Validation, characterization and comparison of microalgae Chlorella vulgaris and Chlamydomona reinhardtii growth kinetics, Int. J. Chemtech, 10(15), 411–420.

Banerjee, A., Guria, C., & Maiti, S. K. (2016). Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock. Energy, 115, 1272-1290.

Barahoei, M., Hatamipour, M. S., & Afsharzadeh, S. (2020). CO2 capturing by chlorella vulgaris in a bubble column photo-bioreactor; Effect of bubble size on CO2 removal and growth rate. Journal of CO2 Utilization, 37, 9-19.

Beuckels, A., Smolders, E., & Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98–106.

Caporgno, M. P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., & Bengoa, C. (2015). Microalgae cultivation in urban wastewater: Nutrient removal and biomass production for biodiesel and methane. Algal Research, 10, 232–239.

Chiu, S. Kao, C. Chen, C. Kuan, T. Ong, S. and Lin, C. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389-3396.

Converti A, Cassaza A, Ortiz E, Perego P, Borchi M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process. 48(6), 1146-1151.

Csutak, O., Stoica, I., Ghindea, R., Tanase, A. M., & Vassu, T. (2010). Insights on yeast bioremediation processes. Romanian Biotechnological Letters, 15(2), 5066–5071.

Dean, A. P., Sigee, D. C., Estrada, B., & Pittman, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource technology, 101(12), 4499-4507.

Domínguez, I. Ruiz, J. Arbib, Z. Chinalia, F. Garrido, C. Rogalla, F, Andrade, I. Perales, J. (2013). Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresource Technology, 131, 429–436.

Dos Santos, R. R., Moreira, D. M., Kunigami, C. N., Aranda, D. A. G., & Teixeira, C. M. L. L. (2015). Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass. Ultrasonics sonochemistry, 22, 95-99.

Eslami, A., Borghei, S. M., Rashidi, A., & Takdastan, A. (2018). Preparation of activated carbon dots from sugarcane bagasse for naphthalene removal from aqueous solutions. Separation Science and Technology, 53(16), 2536–2549.

Gutiérrez, R., Passos, F., Ferrer, I., Uggetti, E., & García, J. (2015). Harvesting microalgae from wastewater treatment systems with natural flocculants: Effect on biomass settling and biogas production. Algal Research, 9, 204–211.

Grace, C. E. E., Lakshmi, P. K., Meenakshi, S., Vaidyanathan, S., Srisudha, S., & Mary, M. B. (2020). Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 224, 117382.

Habibzadeh, M., Chaibakhsh, N., & Naeemi, A. S. (2018). Optimized treatment of wastewater containing cytotoxic drugs by living and dead biomass of the freshwater microalga, Chlorella vulgaris. Ecological Engineering, 111, 85–93.

Huo, S., Kong, M., Zhu, F., Zou, B., Wang, F., Xu, L., ... & Huang, D. (2018). Mixotrophic Chlorella sp. UJ-3 cultivation in the typical anaerobic fermentation effluents. Bioresource technology, 249, 219-225.

Infante, C., Angulo, E., Zárate, A., Florez, J. Z., Barrios, F., & Zapata, C. (2012). Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances En Ciencias e Ingeniería, 3(2), 159–164.

Kim, D. W., Shin, W. S., Sung, M. G., Lee, B., & Chang, Y. K. (2019). Light intensity control as a strategy to improve lipid productivity in Chlorella sp. HS2 for biodiesel production. Biomass and Bioenergy, 126, 211-219.

Kuo, C. M., Chen, T. Y., Lin, T. H., Kao, C. Y., Lai, J. T., Chang, J. S., & Lin, C. S. (2015). Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresource technology, 194, 326-333.

Khoo, K. S., Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L., & Chen, W. H. (2020). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource technology, 304, 122996.

Kiran, B. Pathak, K. Kumar, R. Deshmukh, D. (2014) Cultivation of Chlorella vulgaris IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecological Engineering, 73, 326–330.

Manisali, A. Y., Sunol, A. K., & Philippidis, G. P. (2019). Effect of macronutrients on phospholipid production by the microalga Nannochloropsis oculata in a photobioreactor. Algal Research, 41, 101514.

Matamoros, V., Uggetti, E., García, J., & Bayona, J. M. (2016). Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. Journal of hazardous materials, 301, 197-205.

Miglio R; Palmery S; Salvalaggio M; Carnelli L; Capuano F; Borrelli R. (2013). Microalgae triacylglycerols content by FT-IR spectroscopy, Journal of applied phycology 25, 1621-1631.

Montes D’Oca, M.G., Viêgas, C.V., Lemões, J.S., Miyasaki, E.K., Morón-Villarreyes, J.A., Najafpour, G. D. (2007). Growth Kinetics. Biochemical Engineering and Biotechnology, 81–141.

Morais, K. C., Conceição, D., Vargas, J. V., Mitchell, D. A., Mariano, A. B., Ordonez, J. C., ... & Kava, V. M. (2021). Enhanced microalgae biomass and lipid output for increased biodiesel productivity. Renewable Energy, 163, 138-145.

Nagappan, S., & Kumar, G. (2021). Investigation of four microalgae in nitrogen-deficient-synthetic wastewater for low-cost bio-refinery-based biofuel production. Environmental Technology & Innovation, 101572.

Ouyang, Y., Zhao, Y., Sun, S., Hu, C., & Ping, L. (2015). Effect of light intensity on the capability of different microalgae species for simultaneous biogas upgrading and biogas slurry nutrient reduction. International Biodeterioration and Biodegradation, 104, 157–163.

Ortiz-Moreno, M. L., Cortés-Castillo, C. E., Sánchez-Villarraga, J., Padilla, J., & Otero-Paternina, A. M. (2012). Evaluación del crecimiento de la microalga Chlorella sorokiniana en diferentes medios de cultivo en condiciones autotróficas y mixotróficas. Orinoquia, 16(1), 11-20.

San Miguel, V., Peinado, C., Catalina, F., & Abrusci, C. (2009). Bioremediation of naphthalene in water by Sphingomonas paucimobilis using new biodegradable surfactants based on poly (ɛ-caprolactone). International Biodeterioration & Biodegradation,63, 24-43.

Sasi, D. Mitra, P. Vigueras, A. and Hill, G. (2011). Growth kinetics and lipid production using Chlorella vulgaris in a circulating loop photobioreactor. Journal of Chemical Technology and Biotechnology, 86(6), 875–880.

Soleimanikhorramdashti, M., Samipoorgiri, M., & Majidian, N. (2021). Extraction lipids from chlorella vulgaris by supercritical CO2 for biodiesel production. South African Journal of Chemical Engineering.

Sorokina, K. N., Samoylova, Y. V., & Parmon, V. N. (2020). Comparative analysis of microalgae metabolism on BBM and municipal wastewater during salt induced lipid accumulation. Bioresource Technology Reports, 11, 100548.

Tagliaferro, G. V., Izário Filho, H. J., Chandel, A. K., da Silva, S. S., Silva, M. B., & dos Santos, J. C. (2019). Continuous cultivation of Chlorella minutissima 26a in landfill leachate-based medium using concentric tube airlift photobioreactor. Algal Research, 41, 101549.

Thirugnanasambantham, R., Elango, T., & Elangovan, K. (2020). Chlorella vulgaris sp. microalgae as a feedstock for biofuel. Materials Today: Proceedings, 33, 3182-3185.

Tompkins, J., MM (Mitzi) De Ville, Day, J algae of North. G., & Turner, M. F. (1995). Culture Collection of Algae & Protozoa: catalogue of strains, 1,350-380.

Yang, Y. H., Klinthong, W., & Tan, C. S. (2015). Optimization of continuous lipid extraction from Chlorella vulgaris by CO2-expanded methanol for biodiesel production. Bioresource technology, 198, 550-556.

Yeh, K., Chang, S. (2010) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol. 2012; 105:120-127.

Zhang, L., Pei, H., Yang, Z., Wang, X., Chen, S., Li, Y., & Xie, Z. (2019). Microalgae nourished by mariculture wastewater aids aquaculture self-reliance with desirable biochemical composition. Bioresource technology, 278, 205-213.

Zheng, S., Chen, S., Zou, S., Yan, Y., Gao, G., He, M., ... & Wang, Q. (2021). Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. Bioresource Technology, 321, 124428.

Zhu, L. D., Li, Z. H., Guo, D. B., Huang, F., Nugroho, Y., & Xia, K. (2017). Cultivation of Chlorella sp. with livestock waste compost for lipid production. Bioresource technology, 223, 296-300.

Publicado
2022-07-30
Cómo citar
Baldiris Navarro, I., Pérez Suárez, J. M., Cafiel Correa, A., Fajardo Cuadro, J., Correa Turizo, R., & Castro Angulo, I. (2022). Producción de lípidos totales de la Microalga Chlorella sp. y Chlorella Vulgaris en condiciones mixotróficas de cultivo. Teknos Revista científica, 22(1), 22 - 30. https://doi.org/10.25044/25392190.1024
Sección
Artículos